Novel flexible belt-shaped coaxial microcables with tunable multicolor luminescence, electrical conductivity and magnetism.

نویسندگان

  • Hong Shao
  • Qianli Ma
  • Xiangting Dong
  • Wensheng Yu
  • Ming Yang
  • Ying Yang
  • Jinxian Wang
  • Guixia Liu
چکیده

A novel type of flexible [Fe3O4/PANI/PMMA]@{[Eu(BA)3phen + Tb(BA)3phen]/PMMA} (PMMA = polymethyl methacrylate, BA = benzoic acid, phen = phenanthroline, PANI = polyaniline) belt-shaped coaxial microcable possessing electrical conductivity, magnetism and color-tunable photoluminescence has been successfully fabricated by electrospinning technology using a specially designed coaxial spinneret. Every strip of belt-shaped coaxial microcable is assembled with a Fe3O4/PANI/PMMA electrically conductive -magnetic bifunctional core and a [Eu(BA)3phen + Tb(BA)3phen]/PMMA insulative and photoluminescence-tunable shell. The conductivity of the core of belt-shaped coaxial microcables reaches up to the order of 10(-2) S cm(-1) and all belt-shaped coaxial microcables are insulated from each other. The tuning of emission color is possible by changing the Eu(3+)/Tb(3+) molar ratio of the belt-shaped coaxial microcables. The electrical conductivity, magnetic and photoluminescence properties of belt-shaped coaxial microcables can be tuned by adjusting the content of PANI, Fe3O4 nanoparticles (NPs) and rare earth complexes. More importantly, the proposed design idea and the construction technique are universal regarding the preparation of other multifunctional one-dimensional micromaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Flexible Belt-shaped Coaxial Microcables with Tunable Multicolor Luminescence, Electrical Conduction and Magnetism

We designed a specially designed coaxial spinneret in this study. The inner stainless-steel needle was connected to the inner plastic syringe just like the traditional one. The outer stainless-steel needle was replaced by a plastic nozzle, and connected to the outer plastic syringe. The tip of the inner stainless-steel needle was shortened 2 cm from the tip of the outer plastic nozzle. This str...

متن کامل

Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality

In order to develop new-typed multifunctional nanocomposites, fluorescent-electrical-magnetic trifunctional coaxial nanoribbons with tunable fluorescent color, including white-light emission, have been successfully fabricated via coaxial electrospinning technology. Each stripe of coaxial nanoribbon is composed of a Fe3O4/PMMA core and a [Eu(BA)3phen+Dy(BA)3phen]/PANI/PMMA (PMMA = polymethyl met...

متن کامل

Multifunctional ScF3:Ln3+ (Ln = Tb, Eu, Yb, Er, Tm and Ho) nano/microcrystals: hydrothermal/solvothermal synthesis, electronic structure, magnetism and tunable luminescence properties.

A facile, hydrothermal/solvothermal route has been developed to synthesize a series of multifunctional lanthanide ion (Tb(3+), Eu(3+), Yb(3+), Tm(3+), Er(3+) and Ho(3+))-activated ScF3 nanocrystals. The morphology and size of ScF3 can be tuned in a controlled manner by altering the additives and volume ratios of H2O : EtOH in the initial solution. Under ultraviolet (UV), vacuum ultraviolet (VUV...

متن کامل

Synthesis, Crystal Structure, Luminescence and Magnetism of Three Novel Coordination Polymers Based on Flexible Multicarboxylate Zwitterionic Ligand

Three novel zwitterionic coordination polymers, namely, {[Zn(HCbdcp)2]·H2O} (1), {[Mn(Cbdcp)]·3H2O} (2) and {[Cu2(Cbdcp)(HCbdcp)Cl·H2O]·2H2O} (3), Cbdcp = 3,5-dicarboxy-1-(4carboxybenzyl)pyridin-1-ium, have been prepared by a hydrothermal method and characterized by X-ray single crystal diffraction analysis, powder X-ray diffraction analysis, IR spectroscopy, and thermogravimetric analysis. Wit...

متن کامل

Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine

Graphite like C3N4 (g-C3N4) was synthesized facilely via the low temperature thermal condensation of melamine between 300-650°C. The results showed that the products maintained as melamine when the temperature is below 300°C. With the increase of temperature, the products were transformed into carbon nitride and amorphous g-C3N4 successively. The morphology of products was changed from spherica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 34  شماره 

صفحات  -

تاریخ انتشار 2015